skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wahed, Shabnam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This complete research paper details an investigation into the influence of instructors' pedagogical knowledge on their classroom practices in the context of teaching first-year engineering courses. Background and Motivation: First-year engineering courses serve as the foundational setting in which students are introduced to the field of engineering as well as the pedagogies specific to engineering teaching and learning. These courses are pivotal in equipping students with essential knowledge and skills, setting the stage for their success in more advanced engineering topics. Understanding how instructors' pedagogical knowledge affects their teaching practices is crucial. Pedagogical knowledge encompasses a wide range of techniques to effectively manage a classroom and engage students. This includes the use of instructional strategies that cater to diverse student needs, the design of impactful and engaging lesson plans, etc. There is, however, limited research on how instructors’ pedagogical knowledge influences their classroom practices in first-year engineering courses. Hence, it seems opportune and essential to conduct additional research on engineering instructors' classroom practices. Research Question: The central question driving this research is: How does instructors' pedagogical knowledge influence their pedagogical practices for first-year engineering courses? Method: For this study, we chose the model of teacher professional knowledge and skill (TPK&S) that includes pedagogical content knowledge (PCK). The model recognizes the fundamental importance of pedagogical knowledge and contextualizes PCK within that framework, encompassing the intricate nature of teaching and learning. A descriptive case study was utilized as a methodology for this work to delve into the phenomenon. The context of the study was a first-year introductory engineering course offered at a large public research institution. This is a pilot study for an NSF-funded project (blinded for review), the study involved two instructors, Chandler and Joey (pseudonyms), chosen through purposive sampling, with varying levels of teaching experience. Data collection involved direct classroom observation using the Teaching Dimensions Observation Protocol (TDOP) and semi-structured interviews conducted after the observations. The interviews were conducted after classroom observations, allowing the researcher to explore specific findings from the observations. Results: Thematic analysis was used to categorize the data based on the constructs of the theoretical framework. The analysis revealed three major themes: (a) Instructors' topic-specific professional knowledge significantly influences their pedagogical practices. Both instructors adapt their teaching methods based on their understanding of course material and students' difficulties. (b) The interaction between instructors' personal pedagogical content knowledge (PCK) and the classroom context shapes their classroom practices. (c) Instructors' beliefs and prior knowledge act as amplifiers or filters based on the situation. They filter out their teaching practices that do not align with their beliefs and prior knowledge. Conclusion: The findings presented in this paper provide valuable insights into the complex interplay between instructors' pedagogical knowledge and their classroom practices. This work holds significant implications for current and future first-year instructors in that this paper will showcase how instructors use their understanding of the content and their students to teach, which is a critical aspect of helping students successfully integrate into engineering. 
    more » « less
  2. This lessons learned paper delves into the realm of effective student-centered teaching practices within middle and upper-level engineering classes, with the primary goal of enhancing students' acquisition of disciplinary knowledge. The research is anchored by a central inquiry: what student-centered teaching approaches do exemplary engineering faculty employ to promote knowledge-building in their courses, and how do these approaches align with their beliefs about teaching? To address the research question, the study employed the participatory action research (PAR) methodology, which prioritizes the invaluable input and expertise of participants. A diverse group of participants renowned for their teaching excellence was selected from five departments. A total of ten participants were chosen, and data was collected using a variety of methods, including classroom observations, analysis of course materials, surveys, and focus group discussions. Our observations across various courses have revealed common practices employed by instructors to foster effective learning environments. These practices encompass dynamic and diverse class introductions that utilize strategies like revisiting prior content, storytelling, and addressing student well-being to establish a strong foundation for the session. Throughout the class, instructors consistently maintained student engagement through techniques such as group activities, structured interactions, active problem-solving, and thought-provoking question-and-answer sessions. Visual aids and technology were integral in enhancing content delivery. Instructors also ensured the content was relatable by linking lessons to research findings, relatable examples, and familiar landmarks, grounding theoretical concepts in real-life relevance. Personalized support was a priority, with instructors offering targeted feedback to smaller groups and individual students, including one-on-one sessions for additional assistance. Some instructors introduced unique practices such as debate activities, involving students in decision-making processes, cross-course connections, and specialized problem-solving techniques. These diverse approaches collectively underscore the multifaceted strategies instructors employ to create engaging and effective learning experiences. Another significant initiative undertaken in our study involved organizing a summer workshop that provided a platform for instructors to convene and engage in collaborative discussions regarding their teaching practices and their top five teaching priorities. During this workshop, we also deliberated on the preliminary findings from our data collection. The instructors collectively emphasized the importance of getting students engaged in the learning process. We identified several overarching categories of priorities that held relevance for all instructors, including the establishment of personal relationships with students, the effective organization of course content and class activities, strategies for motivating students, and the integration of course content with real-world applications. During the lightning talk, we will share a comprehensive overview of the study's research findings as well as the importance of student-centered teaching practices in engineering education. 
    more » « less